Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle.
نویسندگان
چکیده
The first characterization of the kinetics and subcellular compartmentation of adenylate kinase activity in intact muscle has been accomplished using rat diaphragm equilibrated with [18O]water. Rates of adenylate kinase-catalyzed phosphoryl transfer were measured by appearance of 18O-labeled beta-phosphoryls in ADP and ATP resulting from the transfer to AMP of newly synthesized 18O-labeled gamma-ATP. Unique features of adenylate kinase catalysis were uncovered in the intact cell not predictable from cell free analysis. This enzyme activity, which in non-contracting muscle is limited to 1/1000 of the estimated Vmax (cell free) apparently because of restricted ADP availability, is localized in subcellular compartments that increase in size and/or number with contractile frequency. Contraction also causes frequency-dependent increments in adenylate kinase velocity (22-fold at 4 Hz) as does oxygen deprivation (35-fold). These enhanced rates of adenylate kinase activity, equivalent to processing all the cellular ATP and ADP in approximately 1 min, occur when levels of ATP, ADP, and AMP are maintained very near their basal steady state. These characteristics of the dynamics of adenylate kinase catalysis in the intact cell demonstrate that rapid rates of AMP production from ADP are balanced by equally rapid rates of AMP phosphorylation with no net synthesis or accumulation of any adenine nucleotide. This rapid processing of nucleotide phosphoryls conforms to a proposed scheme whereby the adenylate kinase system provides the unique function of transferring, as beta-ADP, high energy phosphoryls generated by glycolytic metabolism to ATP-utilizing components in muscle.
منابع مشابه
Studies on possible phosphoryl enzyme formation in catalysis by hexokinase, pyruvate kinase, and glucose 6-phosphatase.
One possible mode of enzymic phosphoryli transfer involves formation of phosphoenzymes as intermediates. Thus far, however, convincing evidence for the formation of such intermediates has been obtained only for the phosphoglucomutase reaction (I, 2) and, to a lesser extent, for the phosphoglyceromutase reaction (3). Suggestive evidence has been reported for the participation of phosphoenzyme in...
متن کاملAdenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure.
Although the downregulation of creatine kinase activity has been associated with heart failure, creatine kinase-deficient transgenic hearts have a preserved contractile function. This suggests the existence of alternative phosphotransfer pathways in the myocardium, the identity of which is still unknown. In this study, we examined the contribution of adenylate kinase-catalyzed phosphotransfer t...
متن کاملIncreased Contribution in Heart Failure
Although the downregulation of creatine kinase activity has been associated with heart failure, creatine kinase–deficient transgenic hearts have a preserved contractile function. This suggests the existence of alternative phosphotransfer pathways in the myocardium, the identity of which is still unknown. In this study, we examined the contribution of adenylate kinase–catalyzed phosphotransfer t...
متن کامل31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle.
The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo (31)P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This relaxation process carries information on the association state of ATP in the cell. To disentangl...
متن کاملImpaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice.
Previously we demonstrated that efficient coupling between cellular sites of ATP production and ATP utilization, required for optimal muscle performance, is mainly mediated by the combined activities of creatine kinase (CK)- and adenylate kinase (AK)-catalyzed phosphotransfer reactions. Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 1 شماره
صفحات -
تاریخ انتشار 1990